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Abstract
The indecomposable solvable Lie algebras with graded nilradical of maximal
nilindex and a Heisenberg subalgebra of codimension one are analysed, and
their generalized Casimir invariants are calculated. It is shown that rank
one solvable algebras have a contact form, which implies the existence of an
associated dynamical system. Moreover, due to the structure of the quadratic
Casimir operator of the nilradical, these algebras contain a maximal non-abelian
quasi-classical Lie algebra of dimension 2n − 1, indicating that gauge theories
(with ghosts) are possible on these subalgebras.

PACS numbers: 02.20.Sv, 02.20.Qs, 03.65.Fd

1. Introduction

Lie algebras and their invariants play a relevant role in physical models, such as the
multidimensional cosmological models, the standard model, nuclear collective motions
and rotational states in particle and nuclear physics, the Petrov classification in general
relativity, quantum mechanics or, more recently, string theory, where isometry groups of high-
dimensional spaces are needed [1–3]. Lie algebras also appear as symmetries of dynamical
systems, and are therefore deeply related to the conservation laws of physics [4]. Although
semisimple Lie algebras occupy a central position whitin the Lie algebras appearing in physical
models (Lorentz algebra, su(N) and so(p, q) series, symplectic algebras sp(N, R), etc.), as
well as various semidirect products, like the Poincaré or the inhomogeneous Lie algebras,
the class of solvable algebras has shown to be of considerable interest, as follows from their
applicability to the theory of completely integrable Hamiltonian systems or non-abelian gauge
theories [5, 6]. While the classification of semisimple Lie algebras constitutes a classical
result, solvable Lie algebras over the real field R have been classified only up to dimension
six ([7–9] and references therein). The absence of global structural properties for this class,
as well as the existence of parametrized families, indicate that a global classification is not
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feasible. However, proceeding by structure, important classes have been classified and their
invariants determined, like solvable Lie algebras with Heisenberg or triangular nilradical
[10, 11], or specific types of solvable Lie algebras, called rigid ones [12].

In [13] the authors analysed solvable Lie algebras having as nilradical a nilpotent Lie
algebra nn,1 of maximal nilindex and an abelian ideal of codimension one. These algebras are
interesting in the sense that the nilradical is naturally graded and has the maximal possible
nilindex for a nilpotent Lie algebra. Indeed any nilpotent Lie algebra of dimension n and
nilindex n − 1 can be shown to be a deformation of nn,1. Moreover, it is the only naturally
graded algebra in odd dimension with these properties. In even dimension there exists
another naturally graded algebra with maximal nilindex, called Q2n, which contains a maximal
Heisenberg subalgebra of codimension one. The purpose of this work is to analyse the real
solvable Lie algebras having the latter nilradical, thus completing the study of invariants
of solvable algebras having naturally graded nilradicals of maximal nilindex. While various
properties like the structure of the generalized Casimir invariants are similar to the case studied
in [13], the algebras of this paper present some particularities that make them worthy to be
analysed in detail, and that correspond to properties they are lost by contractions. Among
these properties there is the constant number of invariants for any dimension, as well as the
existence of linear contact forms, which allow the construction of a dynamical system on the
corresponding groups and find applications in classical Hamiltonian structures. We also show
that the Q2n algebras contain non-abelian quasi-classical nilpotent Lie algebras of codimension
one, which are of certain interest for the study of solutions of the Yang–Baxter equations and
in gauge theories based on solvable algebras [14].

We apply the Einstein convention and usual notations for tensor algebra. By
indecomposable Lie algebras we mean algebras that do not split into a direct sum of
ideals. Unless otherwise stated, any Lie algebra considered in this work is defined over the
fields F = R, C.

2. Invariants of Lie algebras

The invariant operators of the coadjoint representation of Lie algebras provide important
information on a physical system, like quantum numbers, energy spectra or the existence of
invariant forms. Polynomial invariants are traditionally called Casimir invariants, and occur
for semisimple and nilpotent Lie algebras. More generally, algebraic Lie algebras always
admit invariants that are rational. For non-algebraic Lie algebras, specially for those that
are solvable, we find rational or even transcendental invariants. These also find applications
in representation theory or in classical integrable Hamiltonian systems [5, 15]. In fact, the
algorithm usually applied to compute these invariants [16, 17], based on a system of linear first
order partial differential equations, does not exclude the existence of irrational invariants, nor
there is any physical reason for the invariants to be polynomials. In analogy with the classical
Casimir operators, nonpolynomial invariants are called generalized Casimir invariants.

Let {X1, . . . , Xn} be a basis of g and
{
Ck

ij

}
be the structure constants over this basis. We

consider the representation of g in the space C∞(g∗) given by

X̂i = −Ck
ij xk∂xj

, (1)

where [Xi,Xj ] = Ck
ijXk(1 � i < j � n, 1 � k � n). This representation is easily seen

to satisfy the brackets [X̂i, X̂j ] = Ck
ij X̂k . The invariants are functions on the generators

F(X1, . . . , Xn) of g such that

[Xi, F (X1, . . . , Xn)] = 0, (2)
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and are found by solving the system of linear first order partial differential equations:

X̂iF (x1, . . . , xn) = −Ck
ij xk∂xj

F (x1, . . . , xn) = 0, 1 � i � n. (3)

and then replacing the variables xi by the corresponding generator Xi (possibly after
symmetrizing). A maximal set of functionally independent solutions of (3) will be called
a fundamental set of invariants. The cardinal N (g) of such a set can be described in terms of
the dimension and a certain matrix associated with the commutator table. More specifically,
denote by A(g) the matrix representing the commutator table of g over a given basis, i.e.,

A(g) = (
Ck

ij xk

)
. (4)

Such a matrix has necessarily even rank by antisymmetry. Then N (g) is given by

N (g) = dim g − rank
(
Ck

ij xk

)
. (5)

This formula was first described by Beltrametti and Blasi [16]. With respect to the number
of independent Casimir operators of g, formula (5) is merely an upper bound. For high
dimensional Lie algebras, it is sometimes convenient to work with the analogue of formula (5)
in terms of differential forms. Let L(g) = R{dωi}1�i�dim g be the linear subspace of

∧2
g∗

generated by the Maurer–Cartan forms dωi of g. If ω = aidωi(a
i ∈ R) is a generic element

of L(g), there always exists an integer j0(ω) ∈ N such that
j0(ω)∧

ω �= 0,

j0(ω)+1∧
ω ≡ 0. (6)

This equation shows that r(ω) = 2j0(ω) is the rank of the 2-form ω. We now define

j0(g) = max{j0(ω) | ω ∈ L(g)}. (7)

The quantity j0(g), which depends only on the structure of g, constitutes a numerical invariant
of g [18]. The number of invariants follows from the expression:

N (g) = dim g − 2j0(g). (8)

3. Naturally graded nilpotent algebras of maximal index

To any Lie algebra r we can naturally associate various recursive series of ideals:

D0r = r ⊃D1r = [r, r] ⊃ · · · ⊃ Dkr = [Dk−1r,Dk−1r] ⊃ · · · (9)

C0r = r ⊃C1r = [r, r] ⊃ · · · ⊃ Ckr = [r,Dk−1r] ⊃ · · · (10)

called respectively the derived and central descending sequence. Solvability is given
whenever the derived series is finite, i.e., if there exists a k such that Dkr = 0, and nilpotency
whenever the central descending sequence is finite, i.e., if Ckr = 0 for some k. The dimensions
of the subalgebras in both series provide numerical invariants of the Lie algebra. We use the
notation DS and CDS for the dimension sequences of the descending and central descending
sequences, respectively.

Starting from the central descending sequence, we can associate a graded Lie algebra to
r, which is usually denoted by gr(r),

gi+1 := Cir

Ci+1r
, i � 0. (11)

It satisfies the condition

[gi , gj ] ⊂ gi+j , 1 � i, j. (12)

A Lie algebra is said naturally graded if r and gr(r) are isomorphic Lie algebras.
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Example 1. Consider the six-dimensional nilpotent Lie algebra given by the brackets

[X2, X6] = [X3, X4] = X1,

[X3, X5] = [X4, X6] = X2, (13)

[X4, X5] = X3, [X5, X6] = X4

over the basis {X1, . . . , X6}. It is isomorphic to the Lie algebra A6,22 of the classification in
[19], and satisfies DS = [6, 4, 1, 0] and CDS = [6, 4, 3, 2, 1, 0]. The associated graded Lie
algebra gr(A6,22) has the brackets

[X2, X6] = [X3, X4] = X1,

[X3, X5] = X2, (14)

[X4, X5] = X3, [X5, X6] = X4.

Therefore A6,22 is not naturally graded, since it is not isomorphic to gr(A6,22). However, it
can be shown that gr(A6,22) is a Inönü–Wigner contraction of A6,22.

Indeed, it can be shown that the graded algebras gr(n) are always a contraction of the
Lie algebra n. Therefore the naturally graded nilpotent Lie algebras play a central role in the
classification of nilpotent Lie algebras.

In [13] the solvable Lie algebras having the n-dimensional nilpotent Lie algebras nn,1

defined by

[X1, Xi] = Xi+1, 2 � i � n − 1 (15)

as nilradical were analysed. The nn,1 algebra has maximal nilindex and also has an abelian
subalgebra of maximal dimension, generated by {X2, . . . , Xn}. It can be easily verified that
this algebra is naturally graded. The question whether there exist other naturally graded
nilpotent Lie algebras of dimension n and nilindex n − 1 was answered in [20].

Proposition 1. Let n be a naturally graded nilpotent Lie algebra of dimension n and central
descending sequence CDS = [n, n − 2, n − 3, . . . , 2, 1, 0]. Then n is isomorphic to nn,1 if n
is odd, and isomorphic to nn,1 or Q2n if n is even, where

(i) nn,1:

[X1, Xi] = Xi+1, 2 � i � n − 1

over the basis {X1, . . . , Xn},
(ii) Q2m(m � 3):

[X1, Xi] = Xi+1, 2 � i � 2m − 2

[Xk,X2n+1−k] = (−1)kX2m, 2 � k � m.

over the basis {X1, . . . , X2m}.
We mention that for n = 2m = 4 the Lie algebras n4,1 and Q4 are isomorphic. In

higher dimensions, they are no more isomorphic, but related by a generalized Inönü–Wigner
contraction. More precisely, consider the automorphism of Q2n given by the matrix

(X′
1, . . . , X

′
2n)

T =




1 0 0 · · · 0 0
1 ε 0 · · · 0 0
0 0 ε · · · 0 0
...

...
...

. . .
...

...

0 0 0 0 ε 0
0 0 0 0 0 ε







X1

X2

...

...

X2n−1

X2n




.
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Over the new basis the brackets of Q2n are expressed as

[X′
1, X

′
i] = X′

i+1, 2 � i � 2n − 1

[X′
k, X

′
2n+1−k] = (−1)kεX′

2n, 2 � k � n.
(16)

In the limit ε → 0 we obtain the Lie algebra n2n,1. Inspite of this fact, the nilpotent Lie
algebras Q2n and nn,1 have a very different behaviour. While the second has a number of
Casimir operators which depends on the dimension [13], the algebra Q2n has a fixed number
of invariants for any n.

Proposition 2. For any n � 3 the nilpotent Lie algebra Q2n has exactly 2 Casimir operators,
given by the symmetrization of the following functions:

I1 = x2n (17)

I2 = x1x2n + x3x2n−1 +
n∑

k=4

(−1)k+1xkx2n+2−k +
(−1)n

2
x2

n+1. (18)

Proof. The Maurer–Cartan equations of the algebra Q2n are

dω1 = dω2 = 0,

dωj+1 = ω1 ∧ ωj , 2 � j � 2n − 2 (19)

dω2n =
n∑

k=2

(−1)kωk ∧ ω2n+1−k.

The 2-form ω = dω2n is of maximal rank, therefore j0(Q2n) = n − 1 and by formula (8) we
have N (Q2n) = 2. Clearly the generator of the centre is one Casimir operator of the algebra.
In order to determine the other independent invariant, we have to solve the system (3):

X̂1F :=
2n−2∑
j=2

xj+1
∂F

∂xj

= 0 (20)

X̂jF := −xj+1
∂F

∂x1
+ (−1)j x2n

∂F

∂x2n+1−j

= 0 (21)

X̂2n−1F := −x2n

∂F

∂x2
= 0, (22)

where 2 � j � 2n−2. Equation (22) implies that ∂F
∂x2

= 0. For any fixed 2 � j � 2n−2, the
function x1x2n + (−1)j xj+1x2n+1−j is a solution of equation (21). If we consider the function
C = x1x2n +x3x2n−1 +

∑n
k=4(−1)k+1xkx2n+2−k + (−1)n

2 x2
n+1, for any j � 3 the following identity

is satisfied:

xj+2
∂C

∂xj+1
+ x2n+1

∂C

∂x2n−j

= 0. (23)

This implies that X̂1(C) = 0, and therefore that C is an invariant of the algebra.
The Casimir operator follows at once replacing xi by Xi . Observe in particular that C

coincides with its symmetrization. �
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3.1. Solvable Lie algebras with fixed nilradical

Any solvable Lie algebra r over the real or complex field admits a decomposition

r = t
−→⊕n (24)

satisfying the relations

[t, n] ⊂ n, [n, n] ⊂ n, [t, t] ⊂ n, (25)

where n is the maximal nilpotent ideal of r, called the nilradical, and −→⊕ denotes the semidirect
product. It was proven in [8] that the dimension of the nilradical satisfies the following
inequality:

dim n � 1

2
dim r. (26)

Applying the Jacobi identity to any elements X ∈ t, Y1, Y2 ∈ n, we obtain that

[X, [Y1, Y2]] + [Y2, [X, Y1]] + [Y1, [Y2, X]] = 0, (27)

i.e., ad(X) acts as a derivation of the nilpotent algebra n. Since the elements X /∈ n,
these derivations are not nilpotent, and given a basis {X1, . . . , Xn} of t and arbitrary scalars
α1, . . . , αn ∈ R−{0}, we have that

(α1 ad(X1) + · · · + αn ad(Xn))
k �= 0, k � 1, (28)

that is, the matrix α1 ad(X1) + · · · + αn ad(Xn) is not nilpotent. We say that the elements
X1, . . . , Xn are nil-independent [8]. This fact imposes a first restriction on the dimension
of a solvable Lie algebra having a given nilradical, namely, that dim r is bounded by the
maximal number of nil-independent derivations of the nilradical.. Therefore, the classification
of solvable Lie algebras reduces to the problem of finding all non-equivalent extensions
determined by a set of nil-independent derivations. The equivalence of extensions is considered
under the transformations of the type

Xi �→ aijXj + bikYk, Yk �→ RklYl, (29)

where (aij ) is an invertible n× n matrix, (bik) is a n× dim n matrix and (Rkl) is an
automorphism of the nilradical n.

4. Derivations of Q2n

In this section we determine the algebra of derivations of Q2n in order to obtain all equivalence
classes of extensions by non-nilpotent derivations.

Proposition 3. Any outer derivation f ∈ Der(Q2n) has the form

f (X1) = λ1X1 + f 2n
1 X2n

f (X2) = λ2X2 +
n−1∑
k=2

f 2k+1
2 X2k+1

f (X2+t ) = (tλ1 + λ2)X2+t +
[ 2n−3−t

2 ]∑
k=2

f 2k+1
2 X2k+1+t , 1 � t � 2n − 4

f (X2n−1) = ((2n − 3)λ1 + λ2)X2n−1

f (X2n) = ((2n − 3)λ1 + 2λ2)X2n.

(30)

In particular dim Der(Q2n)/I Der(Q2n) = n + 1.
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Proof. For convenience we denote for any 1 � i � 2n

f (Xi) =
2n∑

j=1

f
j

i Xj , (31)

where the f
j

i are scalars. Since any derivation maps central elements onto central elements,
we have that

f (X2n) = f 2n
2n X2n. (32)

The condition

[f (X1),X2] + [X1, f (X2)] = f (X3) (33)

shows that

f (X3) = (
f 1

1 + f 2
2

)
X3 +

2n−2∑
k=3

f k
2 Xk+1 − f 2n

1 X2n. (34)

Since X2+t = ad(X1)
t (X2) for 1 � t � 2n − 3, iteration of equation (33) shows that

f (X2+t ) = (
tf 1

1 + f 2
2

)
X2+t +

2n−1−t∑
k=3

f k
2 Xk+t + (−1)tf 2n−1−t

1 X2n. (35)

The condition

[f (X1),X2n−1] + [X1, f (X2n−1)] = 0

implies that f 2
1 = 0. In particular it follows that

f (X2n−1) = (
(2n − 3)f 1

1 + f 2
2

)
X2n. (36)

We now evaluate the Leibniz condition on the pairs (X2, X2+t ) for 1 � t � 2n − 4:

[f (X2),X2+t ] + [X2, f (X2+t )] = f 2n−1−t
2 (1 − (−1)t )X2n + f 1

2 X3+t = 0,

from which we deduce that f 1
2 = 0 and

f 1
2 = 0 f 2n−1−t

2 = 0, t = 1, 3, . . . , 2n − 5. (37)

It can be easily shown that for all k = 2, . . . , n we obtain

[f (Xk),X2n+1−k] = (
(2n − 3)f 1

1 + 2f 2
2

)
X2n = f (X2n).

The remaining brackets give no new conditions on the coefficients f
j

i . Therefore any derivation
f has the form:

f (X1) = f 1
1 X1 +

2n∑
k=3

f k
1 X2n

f (X2) = f 2
2 X2 +

n−1∑
k=2

f 2k+1
2 X2k+1 + f 2n

2 X2n

f (X2+t )= (
tf 1

1 + f 2
2

)
X2+t +

[ 2n−3−t
2 ]∑

k=2

f 2k+1
2 2k + 1 + t + (−1)tf 2n−1−t

1 X2n, 1 � t � 2n − 4

f (X2n−1) = ((2n − 3)λ1 + λ2)X2n−1

f (X2n) = ((2n − 3)λ1 + 2λ2)X2n.

(38)
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Since there are 3n parameters, we conclude that

dim Der(Q2n) = 3n.

For any of these parameters we define the following derivations:

F 1
1 (X1) = X1, F 1

1 (Xj ) = (j − 2)Xj , F 1
1 (X2n) = (2n − 3)X2n, 3 � j � 2n − 1

F 2
2 (X2) = X2, F 2

2 (Xj ) = Xj, F 2
2 (X2n) = 2X2n, 3 � j � 2n − 1

Fk
1 (X1) = Xk, F k

1 (X2n+2−k) = (−1)kX2n, 3 � j � 2n − 1
F 2n

1 (X1) = X2n,

F 2k+1
1 (X2) = X2k+1, F 2k+1

2 (X2+t ) = X2k+1+t , 1 � t � 2(n − 1 − k), 2 � k � n − 1
F 2n

1 (X2) = X2n.

(39)

To obtain the outer derivations, we have to determine all adjoint operators ad(X) for X ∈ Q2n:
It can be easily seen that the following relations hold:

ad X1 = F 3
2 , ad X2 = F 3

1 , ad Xk = Fk
1 (3 � k � 2n − 2), ad X2n−1 = F 2n

2 .

Therefore there are n + 1 outer derivations, corresponding to the derivations{
F 1

1 , F 2n
1 , F 2

2 , F 2k+1
2

}
1�k�2n−1. �

Corollary 1. Any non-nilpotent outer derivation F of Q2n is of the form

F = α1F
1
1 + α2F

2
2 +

∑
k

βkF
2k+1
2 + βnF

2n
1 , (40)

where either α1 �= 0 or α2 �= 0.

5. Solvable Lie algebras with Q2n-nilradical

In this section we apply the preceding results on derivations and equation (40) to classify the
solvable real and complex Lie algebras having a nilradical isomorphic to the graded algebra
Q2n.

Proposition 4. Any solvable Lie algebra r with nilradical isomorphic to Q2n has dimension
2n + 1 or 2n + 2.

The proof is an immediate consequence of corollary 1.

Proposition 5. Any solvable Lie algebra of dimension 2n + 1 with nilradical isomorphic to
Q2n is isomorphic to one of the following algebras:

(i) r2n+1(λ2) :
[X1, Xk] = Xk+1, 2 � k � 2n − 2
[Xk,X2n+1−k] = (−1)kX2n, 2 � k � n

[Y,X1] = X1,

[Y,Xk] = (k − 2 + λ2)Xk, 2 � k � 2n − 1

[Y,X2n] = (2n − 3 + 2λ2)X2n.

(ii) r2n+1(2 − n, ε)

[X1, Xk] = Xk+1, 2 � k � 2n − 2
[Xk,X2n+1−k] = (−1)kX2n, 2 � k � n

[Y,X1] = X1 + εX2n, ε = −1, 0, 1

[Y,Xk] = (k − n)Xk, 2 � k � 2n − 1

[Y,X2n] = X2n.
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(iii) r2n+1
(
λ5

2 · · · λ2n−1
2

)
[X1, Xk] = Xk+1, 2 � k � 2n − 2
[Xk,X2n+1−k] = (−1)kX2n, 2 � k � n

[Y,X2+t ] = X2+t +
[ 2n−3−t

2 ]∑
k=2

λ2k+1
2 X2k+1+t , 0 � t � 2n − 6

[Y,X2n−k] = X2n−k, k = 1, 2, 3

[Y,X2n] = 2X2n.

Moreover, the first nonvanishing parameter λ2k+1
2 can be normalized to 1.

Proof. Let F = α1F
1
1 + α2F

2
2 +

∑
k βkF

2k+1
2 + βnF

2n
1 be a non-nilpotent derivation.

(i) Let α1 �= 0. A scaling change allows us to suppose that α1 = 1. By a change of the type

X′
2+t = X2+t +

[ 2n−3−t
2 ]∑

k=2

γkX2k+1+t , 0 � t � 2n − 4

X′
i = Xi, i = 1, 2n − 1, 2n,

(41)

we put to zero first f 2n−1
2 , then f 2n−3

2 etc up to f 5
2 . This shows that the extension given

by F is equivalent to the extension defined by

F ′ = F 1
1 + α2F

2
2 + βnF

2n
1 . (42)

If further α2 �= 2 − n, then the change of basis

X′
1 = X1 +

f 2n
1

2(n − 2 + α2)
X2n (43)

allows us to suppose f 2n
1 = 0. Therefore the derivation is diagonal and has eigenvalues

� = (1, α2, 1 + α2, . . . , 2n − 3 + α2, 2n − 3 + 2α2) (44)

over the ordered basis {X1 · · · X2n} of Q2n. We obtain the solvable Lie algebras r2n+1(α2).
However, if α2 = 2 − n and f 2n

1 �= 0, then it cannot be removed. The only possibility is
to consider scaling transformations. Over F = R this allows us to put f 2n

1 equal to 1 if
f 2n

1 > 0 or f 2n
1 = −1 if f 2

1 < 0, while over F = C we can always normalize f 2n
1 to 1.

This gives the Lie algebras r2n+1(2 − n, ε)1. In addition, if α2 = 2 − n but f 2n
1 = 0, we

obtain the Lie algebra r2n+1(2 − n).
(ii) Let us suppose now that α1 = 0. By nil-independence we have α2 �= 0 and by scaling

transformation we can suppose that α2 = 1. The change of basis

X′
1 = X1 − 1

2
f 2n

1 X2n (45)

allows us to put f 2n
1 to zero. Now the parameters f 2k+1

2 (2 � k � n − 1) cannot be
removed, so that unless all vanish, the derivation F is not diagonal. However, the first
non-vanishing parameter f 2k+1

2 can always be normalized to 1 by a scaling change of
basis. This case provides the family of algebras r2n+1

(
f 5

2 . . . f 2n−1
2

)
. �

1 The Lie algebras r2n+1(2 − n,−1) and r2n+1(2 − n, 1) being isomorphic over C.
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Finally, if we add the two nil-independent elements, there is only one possibility:

Proposition 6. For any n � 3 there is only one solvable Lie algebra r2n+2 of dimension 2n+ 2
having a nilradical isomorphic to Q2n :

[X1, Xk] = Xk+1, 2 � k � 2n − 2
[Xk,X2n+1−k] = (−1)kX2n, 2 � k � n

[Y1, Xk] = kXk 1 � k � 2n − 1

[Y1, X2n] = (2n + 1)X2n,

[Y2, Xk] = Xk, 2 � k � 2n − 1

[Y2, X2n] = 2X2n.

6. The generalized Casimir invariants

We now consider the solvable Lie algebras obtained in the previous section, and compute their
generalized Casimir invariants.

Theorem 1. The Lie algebras r(λ2), r(2 − n, ε) and r
(
λ5

2, . . . , λ
2n−1
2

)
have one invariant for

any dimension. They can be chosen as follows:

(i) r2n+1(λ2)

J = I2x
−α
2n , α = 2n − 2 + 2λ2

2n − 3 + 2λ2
, (46)

(ii) r2n+1(2 − n, ε)

J = 1

x2
2n

I2 − ε ln(x2n), (47)

(iii) r2n+1
(
λ5

2, . . . , λ
2n−1
2

)
J = I2

x2n

, (48)

where in all cases

I2 = x1x2n + x3x2n−1 +
n∑

j=4

(−1)j xjx2n+2−j +
(−1)n+1

2
x2

n+1. (49)

Proof. Using the Maurer–Cartan equations of the solvable Lie algebras above, it is
straightforward to verify that in all cases we have N (r) = 1. If moreover the derivation
F defining the extension of Q2n acts nontrivially on the centre X2n, then clearly the invariants
are independent on the variable y associated with the generator Y. To find the invariants of
the solvable algebras reduces then to solve the equation Ŷ F = 0, taking into account the
invariants I1 = x2n and

I2 = x1x2n + x3x2n−1 +
n∑

j=4

(−1)j xjx2n+2−j +
(−1)n+1

2
x2

n+1 (50)

obtained from proposition 2.
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(i) r(λ2).
The equation to be solved is

Ŷ F := x1
∂F

∂x1
+

2n−1∑
k=2

(k − 2 + λ2)xk

∂F

∂xk

+ (2n − 3 + 2λ2)x2n

∂F

∂x2n

= 0. (51)

It can be easily verified that

Ŷ (I1) = (2n − 3 + 2λ2)I1 Ŷ (I2) = (2n − 2 + 2λ2)I2.

This means that the Casimir operators of the nilradical are semi-invariants of the solvable
extension. This fact always holds for diagonal derivations [10, 12, 13, 21]. Observe
that if 2n − 3 + 2λ2 = 0, then J = x2n is already the invariant of the algebra, while for
2n − 2 + 2λ2 = 0 the function I2 is a Casimir operator of r2n+1(2 − n). If neither of I1 or
I2 is a solution of (51), then, considering I1 and I2 as new variables u and v, we take the
differential equation

∂	

∂u
+

(2n − 2 + 2λ2)v

(2n − 3 + 2λ2)u

∂	

∂v
= 0, (52)

with the general solution

	

(
u2n−2+2λ2

v2n−3+2λ2

)
. (53)

Therefore the invariant of r2n+1(λ2) can be taken as

J = I2x
−α
2n , α =

(
2n − 2 + 2λ2

2n − 3 + 2λ2

)
. (54)

(ii) r2n+1(2 − n, ε).
In this case we have

Ŷ F := (x1 + εx2n)
∂F

∂x1
+

2n−1∑
k=2

(k − n)xk

∂F

∂xk

+ x2n

∂F

∂x2n

= 0. (55)

Since the action is not diagonal when ε �= 0, Ŷ (I2) will not be a multiple of I2. However,
replacing I2 by I2x

−2
2n , we obtain

Ŷ
(
I2x

−2
2n

) = ε.

Since Ŷ (ln(x2n)) = 1, adding the logarithm −ε ln(x2n), the function

I2x
−2
2n − ε ln(x2n) (56)

is a solution of (55), and can be taken as invariant of the algebra.
(iii) r2n+1

(
λ5

2, . . . , λ
2n−1
2

)
.

For the families the equation to be solved is

Ŷ F :=
2n−1∑
k=2

xk

∂F

∂xk

+ 2x2n

∂F

∂x2n

= 0. (57)

After some calculation it follows that

Ŷ (I1) = 2I1 Ŷ (I2) = 2I2,

so that applying the same method as in (52), the invariant can be chosen as

J = I2

I1
. (58)

�
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As expected, most of the solvable algebras have harmonics as invariants (see [13] for
the invariants in the nn,1 case). Only for special values of the parameters classical Casimir
operators are obtained. It should be noted that no rational basis of invariants of r2n+1(2 −n, ε)

can be obtained for ε �= 0.

Proposition 7. The Lie algebra r2n+2 has no invariants for any n � 3.

If {ω1, . . . , ω2n, θ1, θ2} denotes a dual basis to {X1, . . . , X2n, Y1, Y2}, then the Maurer–
Cartan equations have the form

dω1 = ω1 ∧ θ1

dω2 = 2ω2 ∧ θ1 + ω2 ∧ θ2

dωk = ω1 ∧ ωk−1 + kωk ∧ θ1 + ωk ∧ θ2, 3 � k � 2n − 1

dω2n =
n∑

k=2

(−1)kωk ∧ ω2n+1−k + (2n + 1)ω2n ∧ θ1 + 2ω2n ∧ θ2

dθ1 = dθ2 = 0.

(59)

Taking the form ξ = dω1 + dω2n and computing the nth wedge product we obtain

n∧
ξ = ±(2n)n!ω1 ∧ · · · ∧ ω2n ∧ θ1 ∧ θ2 �= 0, (60)

and by formula (8) the Lie algebra has no invariants.

7. Geometric properties of solvable Lie algebras with Q2n-radical

In view of the last proposition, which shows that the Lie algebra r2n+2 is endowed with an
exact symplectic structure, it is natural to ask whether the other solvable Lie algebras with
nilradical isomorphic to Q2n and dimension 2n + 1 also have special geometrical properties.
Specifically, we analyse the existence of linear contacts forms on these algebras, i.e., 1-forms
ω ∈ r∗

2n+1 such that ω ∧ ( ∧n
dω

) �= 0. This type of geometrical structure has been shown
to be of interest for the analysis of differential equations and also for dynamical systems
[22, 23].

Proposition 8. Let n � 3. Any solvable Lie algebra r with nilradical isomorphic to Q2n, with
the exception of r2n+1(2 − n, 0), is endowed with a linear contact form.

Proof. Let {ω1, . . . , ω2n, θ} be a dual basis of {X1, . . . , X2n, Y }.

(i) The Maurer–Cartan equations of r2n+1(λ2) are

dω1 = ω1 ∧ θ

dω2 = λ2ω2 ∧ θ

dωk = ω1 ∧ ωk−1 + (k − 2 + λ2)ωk ∧ θ, 3 � k � 2n − 1

dω2n =
n∑

k=2

(−1)kωk ∧ ω2n+1−k + (2n − 3 + 2λ2)ω2n ∧ θ

dθ = 0.

(61)
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Taking ω = ω1 + ω2n, the exterior product gives

ω ∧ ( n∧
dω

) = 2n(n − 1)!(λ2 + n − 2)ω1 ∧ · · · ∧ ω2n ∧ θ �= 0. (62)

(ii) The Maurer–Cartan equations of r2n+1(2 − n, ε) are

dω1 = ω1 ∧ θ

dω2 = ω2 ∧ θ

dωk = ω1 ∧ ωk−1 + (k − n)ωk ∧ θ, 3 � k � 2n − 1

dω2n =
n∑

k=2

(−1)kωk ∧ ω2n+1−k + ω2n ∧ θ + εω1 ∧ θ

dθ = 0.

(63)

Taking again the 1-form ω = ω1 + ω2n, we obtain that

ω ∧ ( n∧
dω

) = εn!ω1 ∧ · · · ∧ ω2n ∧ θ. (64)

Thus ω is a contact form whenever ε �= 0. It is not difficult to show that for ε = 0 there
is no linear contact form.

(iii) For r2n+1
(
λ5

2, . . . , λ
2n−1
2

)
, the Maurer–Cartan equations are quite complicated, due to the

number of parameters λk
2. However, in order to find a contact form we can restrict

ourselves to the following equations:

dω1 = 0 (65)

dω2n =
n∑

k=2

(−1)kωk ∧ ω2n+1−k + 2λ2ω2n ∧ θ. (66)

Then the sum ω = ω1 + ω2n satisfies

ω ∧ ( n∧
dω

) = 2n!ω1 ∧ · · · ∧ ω2n ∧ θ �= 0, (67)

and defines a contact form. �

In [23] it was shown that contact forms α on varieties imply the existence of a vector field
X such that α(X) = 1 and X�α = 0, called the dynamical system associated with α. Therefore
for the previous solvable Lie algebras we can construct dynamical systems, which moreover
have no singularities [23]. On the contrary, solvable Lie algebras having the nilpotent graded
algebra nn,1 as nilradical have a number of invariants which depends on the dimension, which
implies that (in odd dimension) they cannot possess a contact form [24]. This loss of structure
is due to the fact that the Heisenberg subalgebra of Q2n spanned by {X2, . . . , X2n} is contracted
onto the maximal abelian subalgebra of nn,1.

8. Quasi-classical subalgebras

In [25] the notion of quasi-classical Lie algebras was introduced to present abelian and
semisimple gauge theories in a unified manner. Moreover, this approach allows us to construct
gauge theories based on non-abelian and non-semisimple Lie algebras. Inspite of the objection
of having ghosts when the compacity condition2 is not satisfied, quasi-classical algebras are

2 That is, when the Lie algebra is reductive.
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still of interest for integrable models with the nonzero curvature condition, as well as for some
solutions of the Yang–Baxter equations [25, 26]. In this section we show that the nilpotent
graded Lie algebras Q2n analysed in this paper, as well as the solvable Lie algebras with
Q2n-nilradical always contain a maximal non-abelian quasiclassical Lie algebra of dimension
2n − 1.

A Lie algebra g is called quasi-classical if it has a bilinear, associative, symmetric and
non-degenerate form H(, ). Obviously any reductive Lie algebra satisfies the requirement,
and is therefore quasi-classical. However, non-reductive algebras of this type exist. In [25] a
characterization in terms of quadratic Casimir operators was given:

Proposition 9. A Lie algebra g is quasi-classical if and only if it possesses a quadratic
Casimir operator I2 = gαβXαXβ such that the symmetric matrix (gαβ) has an inverse (gαβ)

satisfying

gαβgαβ = δαβ.

It follows in particular that the invariants of a quasi-classical Lie algebra depend on all its
generators.

Proposition 10. For any n � 3, the nilpotent algebra Q2n contains a maximal nonabelian
quasi-classical subalgebra of dimension (2n − 1).

Proof. From proposition 2 we know that for any value of n, the nilpotent algebra Q2n has
the quadratic invariant

I2 = x1x2n + x3x2n−1 +
n∑

j=4

(−1)j xjx2n+2−j +
(−1)n+1

2
x2

n+1. (68)

This function actually coincides with its symmetrization, since the involved variables
correspond to commuting generators of the algebra. Therefore we can write the Casimir
operator in matrix form:

I2 = (X1, X2, . . . , X2n−1, X2n)




1
0 0
1

−1
.

(−1)n

2
.

−1
0 1

1 0







X1

X2

:

:
X2n−1

X2n




.

(69)

The matrix is obviously symmetric, but of rank 2n − 1. However, and since the invariants of
Q2n do not depend on the generator X2, we can consider the subalgebra kn of Q2n generated
by {X1, X3, . . . , X2n}. From the system (20)–(22) it follows at once that any invariant of Q2n

is also an invariant of kn, and since the centre of this subalgebra has dimension 2, it has the
supplementary invariant x2n−1. In particular, the quadratic Casimir operator I2 of kn can be
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written as

I2 = (X1, X3, . . . , X2n−1, X2n)




1
1

−1
.

(−1)n

2
.

−1
1

1







X1

X3

:

:
X2n−1

X2n




(70)

over the basis {X1, X3, . . . , X2n}, showing that this algebra is quasi-classical. �

Remark 1. For the Lie algebra nn,1 we also find a quasi-classical maximal subalgebra, and,
as follows from the structure of their invariants [13], this subalgebra is necessarily abelian.
This means that for the corresponding quasi-classical subalgebras, the contraction of Q2n onto
n2n,1 recovers the abelian gauge theory.

Corollary 2. Any solvable Lie algebra with nilradical isomorphic to Q2n possesses a
nonabelian quasi-classical Lie algebra of dimension 2n − 1.

In fact it follows from the structure of these algebras, that none of them is quasiclassical,
since only r2n+1(1 − n) has a quadratic Casimir operator. However, this does not define a
non-degenerate form since the invariant is independent on the variable associated with the
torus generator (or has no invariant if the maximal torus is added).

9. Conclusions

We have completed the study of the generalized Casimir invariants of indecomposable solvable
real Lie algebras with a naturally graded nilradical of maximal nilindex initiated in [13].
Although Q2n is a contraction of nn,1, the corresponding solvable Lie algebras obtained
exhibit rather different structural properties. In particular, there is no relation by contraction
between these algebras, up to the case where both nilpotent algebras have the same torus of
derivations. That is, only r2n+1(1) contracts onto a solvable Lie algebra with nn,1-nilradical.
Further, while the number of invariants of the algebra nn,1 depends on the dimension, for
Q2n it remains fixed for any dimension, and coincides with the maximal number of nil-
independent derivations. As a consequence, the corresponding solvable Lie algebras have
only one invariant, which for special values reduces to a classical Casimir operator, or none
invariants if both nil-independent elements are added. This fact implies the existence of
a contact form on the corresponding solvable Lie algebras or rank one, and is of potential
interest in connection with their contractions onto the Heisenberg Lie algebra [24] and the
construction of positive Einstein metrics [27]. As expected, most of the invariants of solvable
algebras with Q2n-nilradical are harmonics, and for some nondiagonal derivations logarithmic
functions appear.

Another interesting fact is that Q2n and the associated solvable algebras contain a maximal
nonabelian quasi-classical Lie algebra of codimension one, respectively two. This follows
from the structure of the quadratic Casimir operator of the nilradical, and is strongly related
to the maximal Heisenberg subalgebra of Q2n. The latter subalgebra constitutes the reason
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for the main difference between solvable Lie algebras with nilradical nn,1 and Q2n when
realized as symmetry algebras of differential equations. As known, the Heisenberg algebra
hn of dimension 2n + 1 can be faithfully realized in k � (n + 1)-dimensional space by vector
fields. Therefore any Lie algebra that contains hn will need at least (n + 1)-variables for any
realization by vector fields. Since Q2n contains hn−1 for any n � 3, the solvable Lie algebras
with Q2n-nilradical will appear as symmetries of partial differential equations in k-dimensional
space, where k � n. As the algebra Q2n is defined for n � 3, these solvable algebras do not
describe dynamics of physical systems given by a system of ordinary differential equations.
On the contrary, solvable Lie algebras with nn,1-nilradical allow planar realizations, and can
therefore appear as symmetries of ordinary differential equations. Due to the simplicity of the
invariants and structure for both cases, solvable Lie algebras with naturally graded nilradical
of maximal nilindex are suitable candidates to analyse the problem of superposition formulae
for nonlinear differential equations [28].

Finally, solvable Lie algebras analysed in this paper and in [13] are also of interest
in the reduction of sourceless Yang–Mills equations by means of potentials with constant
components. Since the nilpotent algebra nn,1 contains an abelian ideal of codimension
one [13], any rank one solvable Lie algebra associated with this nilradical will contain a
codimension one solvable Lie subalgebra that only admits flat Yang–Mills potentials. By
contrast, no solvable Lie subalgebra of solvable Lie algebras having Q2n as nilradical has this
property. Indeed, since these algebras always contain a Heisenberg subalgebra of dimension
2n − 1, by a result of [29], any Lie algebra containing it necessarily admits a nonflat Yang–
Mills potential. In conclusion, physically the solvable Lie algebras of proposition 5 exhibit
a different behaviour from those of paper [13]. This fact moreover suggests that, even in the
solvable case, group theoretical arguments based on graded Lie algebras are an adequate frame
to analyse models for different physical phenomena.
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